

Automation for a Changing World

Delta Vector Control Drive C2000 Series

Smarter. Greener. Together.

powerful Featuress rligh Fiffclene

The C2000 series AC motor drive provides the most efficient and cost-effective solution for all types of drive applications. It features precise speed, torque and position control functions that are suitable for both sensor and sensorless types of synchronous and asynchronous motors. The C2000 series is also equipped with built-in PLC functions and supports the CANopen Master/Slave extension for the ultimate in system flexibility and fast data exchange.

Table of Contents

Features \& Applications
High-speed networks
Convenient operation platform High performance field oriented control

Fast response to impact load
Auto energy saving operation
dEB function
Permanent magnet motors (SPM, IPM)
REG2000 Series
AFE2000 Series
Energy Regeneration
Application- AFE2000

Option cards
Ordering information

Standard Models (IP20/NEMA1)

Power range: 230V 0.75~90kW, 460V 0.75~450kW

230 V (kW)	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
230 V (HP)	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125
Frame Size	A				B			C			D		E			F
Braking Chopper	Built-in										Optional					
DC Reactor	Optional										Built-in					
EMI Filter	Optional															
Protection Level	IP20										IP00 / IP20					

460 V (kW)	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
460 V (HP)	1	2	3	5	5	7.5	10	15	20	25	30	40	50	60	75	100	125
Frame Size	A							B			C		D0		D		E
Braking Chopper	Built-in																
DC Reactor	Optional																
EMI Filter	Built-in (VFD___C43E)																
Protection Level	IP20																

*Available in China and Taiwan only.

Advanced Drive Controls

- Door Width Auto-tuning

1. High bandwidth control
2. Speed/torque/position control mode
3. Dual rating design
(Normal duty/heavy duty)
4. 4-quadrant torque control and limit
5. For both synchronous and asynchronous motors

- Environmental Adaptability

1. $50^{\circ} \mathrm{C}$ operating temperature
2. Built-in DC reactor
3. Coated circuit boards
4. Built-in EMI filter
5. Global safety standards (CE/UL/cUL)

[^0]| 110 | 132 | 160 | 185 | 220 | 280 | 315 | 355 | 450* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | 175 | 215 | 250 | 300 | 375 | 425 | 475 | 600 |
| | F | | G | | H | | | |
| Optional | | | | | | | | |
| Built-in | | | | | | | | |
| Optional | | | | | | | | |
| IP00 / IP20 | | | | | | | | |

- Versatile Drive Controls

1. Built-in safe stop function
2. Built-in PLC function
3. Built-in brake unit
4. Supports various network protocols
5. Synchronous point-to-point control

- Modular Design

1. Hot plug LCD keypad
2. I/O extension cards
3. Various PG (encoder) feedback cards
4. Network cards for fieldbus modules
5. Removable fan

Modular Design

■ Various accessories options, such as I/O extension cards, encoder feedback cards, communication cards, hot plug LCD keypad, removable terminals and removable fans.

- The modular design fulfills the needs of system applications and equipment maintenance.
- KPC-CC01 keypad

■ Standard RJ45 network cable.

- Easy to remove with one press

- The product nameplate shows the input/output voltage, input/output current, the frequency range, and more.

- RFI Switch

Modular fan design is easy to clean and replace providing longer service life.

Excellent Environment Adaptability

- Built-in DC choke to surpress harmonics*
- Built-in EMI filter to filter noise*
- Conformal coating (Class 3C2 of IEC60721-3-3 standard) ensures drive operation stability and safety in critical environments.
- The electronic components of the drive are isolated from the cooling system to reduce heat interference. Dissipated heat can be discharged by flange-mounting installation, and forced fan cooling can import cold air into the heat sink. The heat dissipation performance is optimized by these two cooling methods.
*Note: Please refer to the Product Specification

Certifications

UL, cUL
C-Tick

CE
C-Tick
ROHS
Low Voltage: EN61800-5-1
EMC: EN61000-3-12, EN61800-3, IEC61000-6-2, IEC61000-6-4, IEC61000-4-2,
IEC61000-4-3, IEC61000-4-4, IEC61000-4-5, IEC61000-4-6, IEC61000-4-8,

Quick and easy parameters setting via the

 LCD keypad- Multi-column display for the drive status
- Simple and intuitive operation
- User-defined parameter groups
- Real Time Clock and calendar function
- Language selection for display
- Copy function saves parameters and PLC programs to the keypad memory for later transfer to another drive
- IP66 protection level

Create homepage logo

Editable message display

Editable chart display

Intelligent PLC Functions

- Built-in 10K steps capacity of PLC functions. Distributed control and independent operation are easily achieved via network connection.
- CANopen Master protocol and PLC functions provide synchronous control and fast data exchange.

High-speed Network

- Provides optional MODBUS RTU and various fieldbus cards for flexible communication applications
- Advanced network functions
- Built-in MODBUS communication interface
- CANopen (DS402)
-

CB (B) S

Ability to control up to 8 Slave drives via the CANopen Master function

- Supports all Delta industrial automation products
(all EDS files of Delta industrial automation products are built-in) • TAP-CN03 distribution
- I/O data layout of each piece of equipment on the CANopen Network
- Planning function for motion control - WPL Soft

RJ45 cable

Delta DeviceNet Builder software is specially designed for DeviceNet communication. With this software, it is easy to plan DeviceNet equipment and remote I/O via parameters to build a standard DeviceNet monitoring structure.

Supports all Delta industrial automation products (all EDS files of Delta industrial automation products are built-in) I/O data layout of each piece of equipment in the DeviceNet network DeviceNet layout software

- EtherNet/IPs

 - MODBUS TCPDelta's communication integrator software not only provides graphic module setting and a human interface design but also supports settings and online monitoring for all Ethernet products.

- Delta software for Ethernet/MODBUS TCP products Graphic module setting and human interface design Auto search function Setting interface for virtual COM port

Convenient Operation Platform for Drive System Management

- Provides a complete operation platform for users' easy control and monitoring via PC, including parameters save/setting, real-time wave monitor, quick setup, for multiple languages and with multi-language operation systems.

High-performance Field Oriented Control

- The FOC+PG mode of C2000 series can output 150% of starting torque at extremely low speeds for precise and stable speed control.

Fast Response to Impact Load

During load changes, the VFD-C2000 calculates the required torque response and minimizes the vibration caused by load impact using FOC.

- Precise position and speed control ideal for printing machine applications.

Auto Energy-Saving Operation

During constant speed operation, this function auto-calculates the best voltage value by the load power for the load.

Deceleration Energy Backup (dEB)

This function controls the motor deceleration for stopping when an unexpected power shut down occurs to prevent mechanical damage. When power resumes, the motor will return to its previous speed.
— Input Voltage
— Motor Speed


```
- Input Voltage
_ Motor Speed
```


A Drive for Permanent Magnet (PM) Motors

The C2000 is a dual mode drive to control both an induction motor and permanent magnet motor. The dynamic response of a PM motor provides precise control of position, speed and torque.

Delta REG2000 Series for

 Power RegenerationUsing the REG2000 with the C2000 in a crane and hoist application provides the user with a four-quadrant operation and energy saving results.

Delta AFE2000 Series for Power Regeneration and Power Quality Improvement

The Active Front End Unit (AFE2000) helps to reduce torque ripple and harmonics with a higher power factor to provide excellent production quality and outstanding energy saving results.

Delta Active Front End AFE2000 Series

Features

- Replaces traditional brake resistor to reduce heat generation.
- Clear energy savings: more than 95% of the regenerative energy is converted into electricity and supplied back to the mains.
- Full-load operation: input-side current THD lower than 5\% and improves power factor up to 99%.
- AC motor drives with AFE2000: supports 4-quadrant operation with variable frequencies and adjustable system.
- Constant DC bus voltage: unaffected by mains voltage fluctuations.

Improves power factor and decreases harmonic distortion.
THD<=5\%, power factor > 99\%

Improves power factor by 20\%

Applications

- Large-inertia loads, such as centrifuge equipment, dewatering machines and roving machines
- 4-quadrant loads including elevators, cranes and pumpjacks (oil extraction machines)
- Quick braking, such as machine tools, bag making machines, auto storage and retrieval systems, and lathes
- Long-term energy feedback, such as wind power, water power, steel printing and paper making machinery (winding equipment)
- Improves power quality for industries such as semiconductor and panel industries

Operating Environment

DO NOT expose the AC motor drive to harsh environments, such as dust, direct sunlight, corrosive/ inflammable gasses, humidity, liquid or vibrations. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ per year.

Installation location	IEC60364-1/IEC60664-1 Pollution degree 2, Indoor use only	
Surrounding	Storage/ Transportation	$-25^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
Temperature	No condensation, no frost	
Rated Humidity	Operation	Max. 95\%
	Storage/ Transportation	Max. 95\%
	No condensation, no frost	
Air Pressure	Operation/ Storage	86 to 106 kPa
	Transportation	70 to 106 kPa
Pollution Level	IEC60721-3-3	
	Operation	Class 3C2; Class 3S2
	Storage	Class 2C2; Class 2S2
	Transportation	Class 1C2; Class 1 S 2
	No condensation, no frost	
Altitude	If AC motor drive is in If it is install at altitud temeperature for eve Grounded is 2000 m .	alled at altitude $0 \sim 1000 \mathrm{~m}$, follow normal operation restriction. $1000 \sim 3000 \mathrm{~m}$, decrease 2% of rated current or lower $0.5^{\circ} \mathrm{C}$ of 100 m increase in altitude. Maximum altitude for Corner
Package Drop	Storage/ Transportation	ISTA procedure 1A(according to weight) IEC60068-2-31
Vibration	1.0 mm , peak to peak value range from 2 Hz to $13.2 \mathrm{~Hz} ; 0.7 \mathrm{G} \sim 1.0 \mathrm{G}$ range from 13.2 Hz to 55 Hz ; 1.0 G range from 55 Hz to 512 Hz . Comply with IEC 60068-2-6	
Impact	IEC/EN 60068-2-27	
Operation Position	Max. allowed offset angle $\pm 10^{\circ}$ (under normal installation position)	

Specification for Operation Temperature and Protection Level

Model	Frame	Top Cover	Conduit Box	Protection Level	Operation Temperature
	$\begin{aligned} & \text { Frame A~C } \\ & \text { 230V: 0.75~22kW } \\ & \text { 460V: 0.75~30kW } \end{aligned}$	Remove top cover	Standard conduit plate	IP20/UL Open Type	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
		Standard with top cover		IP20/UL Type1/NEMA1	$-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
	$\begin{aligned} & \text { Frame D~H } \\ & 230 \mathrm{~V}:>22 \mathrm{~kW} \\ & 460 \mathrm{~V}:>30 \mathrm{~kW} \end{aligned}$	N/A	No conduit box	$\begin{aligned} & \text { IP00 } \\ & \text { IP20/UL Open Type } \end{aligned}$	
VFDxxxCxxA VFDxxxCxxS					$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
				IP00: for the circled area IP20: for all other area	
VFDxxxCxxE VFDxxxCxxU	$\begin{aligned} & \text { Frame A~C } \\ & 460 \mathrm{~V}: 0.75 \sim 30 \mathrm{~kW} \end{aligned}$	Remove top cover	Standard conduit plate	IP20/UL Open Type	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
		Standard with top cover		IP20/UL Type1/NEMA1	$-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
	$\begin{aligned} & \text { Frame D~H } \\ & 230 \mathrm{~V}:>22 \mathrm{~kW} \\ & 460 \mathrm{~V}:>30 \mathrm{~kW} \end{aligned}$	N/A	Standard conduit box	IP20/UL Type1/NEMA1	$-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$

Specifications

A						B			C		
007	015	022	037	040	055	075	110	150	185	220	300
0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22	30
1	2	3	5	5	7.5	10	15	20	25	30	40
2.4	3.2	4.8	7.2	8.4	10	14	19	25	30	36	48
3.0	4.0	6.0	9.0	10.5	12	18	24	32	38	45	60
Rated output current: 120% for 1 minute, 160\% for 3 seconds.											
$0.00 \sim 600.00 \mathrm{~Hz}$											
$2 \sim 15 \mathrm{kHz}(8 \mathrm{kHz})$									$2 \sim 10 \mathrm{kHz}(6 \mathrm{kHz})$		
2.3	3.0	4.5	6.5	7.6	9.6	14	18	24	29	34	45
2.9	3.8	5.7	8.1	9.5	11	17	23	30	36	43	57
Rated output current: 150% for 1 minute, 180\% for 3 seconds.											
$0.00 \sim 300.00 \mathrm{~Hz}$											
$2 \sim 6 \mathrm{kHz}(2 \mathrm{kHz})$											
4.3	5.9	8.7	14	15.5	17	20	26	35	40	47	63
4.1	5.6	8.3	13	14.5	16	19	25	33	38	45	60
$3-\mathrm{phase} \mathrm{AC} 380 \mathrm{~V} \sim 480 \mathrm{~V}(-15 \% \sim+10 \%), 50 / 60 \mathrm{~Hz}$											
$323 \sim 528 \mathrm{Vac}$											
$47 \sim 63 \mathrm{~Hz}$											
$2.6 \pm 0.3 \mathrm{Kg}$						$5.4 \pm 1 \mathrm{Kg}$			$9.8 \pm 1.5 \mathrm{Kg}$		
96	96	96	96	96	96	96	96	96.5	96.5	96.5	96.5
Natural cooling						Fan cooling					
Frame A, B, C: built-in ; Frame D and above: optional											
Frame A, B, C: optional ; Frame D and above: built-in											
Frame A, B, C VFD___C43A: no EMI filter (Optional external EMI filter is available upon purchase) VFDXXX C43E: built-in.											

NOTES:
-The carrier frequency is default. Increasing the carrier frequency requires a reduction in current, please refer to Pr. 06-55 Derating Protection drawing.
-The motor drive should operate in derating current when its control method is set to FOC Sensorless,TQC+PG, TQC Sensorless, PM+PG and PM Sensorless modes.
When the application is performing impact load, select the motor drive with one grade larger capacity.
-For FRAME A, B and C, Model VFD___C43A is under IP20/NEMA1/UL TYPE1 protection level.
-For FRAME D and above, if the last character of the model is A then it is under IP20 protection level but the wiring terminal is under IP00 protection level;
if the last character of the model is E , it is under IP20/NEMA1/UL TYPE1 protection level.

	Frame Size		D0	D			E		F		G		H			
		Model VFD＿＿C	370	450	550	750	900	1100	1320	1600	1850	2200	2800	3150	3550	4500＊
Applicable Motor Output（kW）			37	45	55	75	90	110	132	160	185	220	280	315	355	450
Applicable Motor Output（HP）			50	60	75	100	125	150	175	215	250	300	375	425	475	600
		Rated Output Capacity（kVA）	58	73	88	120	143	175	207	247	295	367	438	491	544	720
		Rated Output Current（A）	73	91	110	150	180	220	260	310	370	460	550	616	683	866
		Overload Capacity	Rated output current： 120% for 1 minute，160\％for 3 seconds．													
		Max．Output Frequency（Hz）	$0.00 \sim 600.00 \mathrm{~Hz}$													
		Carrier Frequency（kHz）	$2 \sim 10 \mathrm{kHz}(6 \mathrm{kHz})$				$2 \sim 9 \mathrm{kHz}(4 \mathrm{kHz})$									
		Rated Output Capacity（kVA）	55	69	84	114	136	167	197	235	280	348	417	466	517	677
		Rated Output Current（A）	69	86	105	143	171	209	247	295	352	437	523	585	649	816
		Overload Capacity	Rated output current： 150% for 1 minute，180\％for 3 seconds．													
		Max．Output Frequency（Hz）	$0.00 \sim 300.00 \mathrm{~Hz}$													
		Carrier Frequency（kHz）	$2 \sim 6 \mathrm{kHz}(2 \mathrm{kHz})$													
		put Current（A）Normal Duty	74	101	114	157	167	207	240	300	380	400	494	555	625	866
		put Current（A）Heavy Duty	70	96	108	149	159	197	228	285	361	380	469	527	594	816
		ated Voltage／Frequency	$3-$ phase AC $380 \mathrm{~V} \sim 480 \mathrm{~V}(-15 \% \sim+10 \%), 50 / 60 \mathrm{~Hz}$													
		perating Voltage Range	$323 \sim 528 \mathrm{Vac}$													
		equency Tolerance	$47 \sim 63 \mathrm{~Hz}$													
		ive Weight	$38.5 \pm 1.5 \mathrm{Kg}$				$64.8 \pm 1.5 \mathrm{Kg}$		$86.5 \pm 1.5 \mathrm{Kg}$		$134 \pm 4 \mathrm{Kg}$		228			
		ficiency（\％）	97	97	97	97	97	97	97	97	97.5	97.5	97.5	97.5	97.5	97.5
		ooling Method	Fancooling													
		aking Chopper	Frame A，B，C：built－in ；Frame D and above：optional													
		Choke	Frame A，B，C：optional ；Frame D and above：built－in													
		MIFilter	Optional external EMI filter is available upon purchase													
		C－COP01	VFDXXXC43A：optional；VFDXXC43E：built－in													
General Specifications													＊Availab	e in Chin	and T	wan only．
Control Method Pulse Width Modulated（PWM）																
Control Mode			1：V／F，2：$S V C, 3: V F+P G, 4: F O C+P G, 5: T Q C+P G, 6: P M+P G$ ， 7：FOC sensorless，8：TQC sensorless，9：PM sensorless													
Control Characteristics		arting Torque	Reach up to 150% or above at 0.5 Hz ．Under FOC＋PG mode，starting torque can reach 150% at 0 Hz ．													
		Curve	4－point adjustable V／f curve and square curve													
		eed Response Ability	5 Hz （vector control can reach up to 40 Hz ）													
		que Limit	Normal duty 160% ，heavy duty 180% of torque current													
	Tor	que Accuracy	$\pm 5 \%$													
		x ．Output Frequency（Hz）	Normal duty：0．00～600．00Hz；Heavy duty： $0.00 \sim 300.00 \mathrm{~Hz}$													
		quency Output Accuracy	Digital command： $\pm 0.01 \%,-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ ，Analog command： $\pm 0.1 \%, 25 \pm 10^{\circ} \mathrm{C}$													
		tput Frequency Resolution	Digital command： 0.01 Hz ，Analog command： 0.03 Xmax ．output frequency $/ 60 \mathrm{~Hz}$（ $\pm 11 \mathrm{bit}$ ）													
		erload Capacity	Normal duty：rated output current is 120% for 60 seconds， 160% for 3 seconds． Heavy duty：rated output current is 150% for 60 seconds， 180% for 3 seconds．													
		quency Setting Signal	＋10V－10，0～＋10V，4～20mA， $0 \sim 20 \mathrm{~mA}$ ，Pulse input													
		cel．／decel．Time	0．00～600．00／0．0～6000．0 Seconds													
		in Control Function	Torque control，Droop control，Speed／torque control switching，Feed forward control，Zero－servo control，Momentary power loss ride thru，Speed search，Over－torque detection，Torque limit， 17 －step speed（max），Accel／decel time switch，S－curve accel／decel， 3 －wire sequence，Auto－Tuning （rotational，stationary），Dwell，Cooling fan on／off switch，Slip compensation，Torque compensation， JOG frequency，Frequency upper／lower limit settings，DC injection braking at start／stop，High slip braking，PID control（with sleep function），Energy saving control，MODOBUS communication （RS－485 RJ45，max． 115.2 kbps ），Fault restart，Parameter copy													
		Control	230 V model ：VFD150C23A（include）and series above：PMW control； VFD110 C23A and series below：on／off switch control 460 V model ：VFD 185 C43A（include）and series above：PMW control； VFD150C43A and series below：on／off switch control													
		tor Protection	Electronic thermal relay protection													
		er－current tection	Over－current protection for 240% rated current current clamp『Normal duty：around 170～175\％』；『Heavy duty：around180～185\％』													
		er－voltage tection	230：drive will stop when DC－BUS voltage exceeds 410 V 460：drive will stop when DC－BUS voltage exceeds 820 V													
		er－temperature Protection	Built－in temperature sensor													
		Il Prevention	Stall prevention during acceleration，deceleration and running independently．													
		start after Instantaneous wer Failure	Parameter setting up to 20 seconds													
		ounding Leakage rrent Protection	Leakage current is higher than 50\％of the AC motor drive＇s rated current													
		itifications	CE © ${ }_{\text {© }}$ us ［													

Wiring

Wiring Diagram for Frame A~C

Note: It is not recommended to use a power capacitor or automatic power factor regulator (APFR) at the power input side. If the system requires such a device please make sure a reactor is installed between the drive and the power capacitor or APFR.

Wiring Diagram for Frame D and Frames Above
*It provides 3-phase power

Dimensions

Digital Keypad

KPC-CC01
Standard LCD Keypad

KPC-CE01
Optional: LCD Keypad

Frame A

MODEL
VFD007C23A VFD015C23A VFD022C23A VFD037C23A VFD007C43A/43E VFD015C43A/43E VFD022C43A/43E VFD037C43A/43E VFD040C43A/43E VFD055C43A/43E

Frame		W	H	D	W1	H1	D1*	\varnothing	$\varnothing 1$	ø2	$\varnothing 3$
A1	mm	130.0	250.0	170.0	116.0	236.0	45.8	6.2	22.2	34.0	28.0
	inch	5.12	9.84	6.69	4.57	9.29	1.80	0.24	0.87	1.34	1.10

Frame B

MODEL
VFD055C23A
VFD075C23A
VFD110C23A
VFD075C43A/43E
VFD110C43A/43E
VFD150C43A/43E

| Frame | W | H | D | W1 | H1 | D1* | S1 | Ø1 | Ø2 | Ø3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{~ m m ~}$ | 190.0 | 320.0 | 190.0 | 173.0 | 303.0 | 77.9 | 8.5 | 22.2 | 34.0 | 28.0 |
| | inch | 7.48 | 12.60 | 7.48 | 6.81 | 11.93 | 3.07 | 0.33 | 0.87 | 1.34 |

Dimensions

Frame C

MODEL

VFD150C23A
VFD185C23A
VFD220C23A
VFD185C43A/43E
VFD220C43A/43E
VFD300C43A/43E
Unit : mm[inch]

Frame		W	H	D	W1	H1	D1*	S1	¢1	¢2	Ø3
C1	mm	250.0	400.0	210.0	231.0	381.0	92.9	8.5	22.2	34.0	50.0
	inch	9.84	15.75	8.27	9.09	15.00	3.66	0.33	0.87	1.34	1.97

Frame D

MODEL
FRAME D1
VFD300C23A VFD370C23A VFD550C43A VFD750C43A

FRAME_D0-1
VFD370C43S
VFD450C43S

Frame		W	H	D	W1	H1	H2	H3	D1*	D2	S1	S2	$\varnothing 1$	$\varnothing 2$	Ø3
D1	mm	330.0	-	275.0	285.0	550.0	525.0	492.0	107.2	16.0	11.0	18.0	-	-	-
	inch	12.99	-	10.83	11.22	21.65	20.67	19.37	4.22	0.63	0.43	0.71	-	-	-

Frame		W	H	D	W1	H1	H2	H3	D1*	D2	S1
D0-1	mm	280.0	-	255.0	235.0	500.0	475.0	442.0	94.2	16.0	11.0
	inch	11.02	-	10.04	9.25	19.69	18.70	17.40	3.71	0.63	0.43

Dimensions

Frame D

MODEL
FRAME_D2 VFD300C23E VFD370C23E VFD550C43E VFD750C43E

FRAME_D0-2
VFD370C43U
VFD450C43U

Frame	W	H	D	W1	H1	H2	H3	D1*	D2	S1	S2	$\varnothing 1$	Ø2	ø3
D2 mm	330.0	688.3	275.0	285.0	550.0	525.0	492.0	107.2	16.0	11.0	18.0	76.2	34.0	22.0
D2 inch	12.99	27.10	10.83	11.22	21.65	20.67	19.37	4.22	0.63	0.43	0.71	3.00	1.34	0.87
Frame	W	H	D	W1	H1	H2	H3	D1*	D2	S1	S2	$\varnothing 1$	ø2	Ø3
D0-2 mm	280.0	614.4	255.0	235.0	500.0	475.0	442.0	94.2	16.0	11.0	18.0	62.7	34.0	22.0
D0-2 inch	11.02	21.19	10.04	9.25	19.69	18.70	17.40	3.71	0.63	0.43	0.71	2.47	1.34	0.87

D1*: Flange mounting

Frame E

Detail A (Mounting Hole)

Detail B (Mounting Hole)

MODEL

FRAME_E1
VFD450C23A
VFD550C23A
VFD750C23A
VFD900C43A
VFD1100C43A

Frame		W	H	D	W1	H1	H2	H3	D1*	D2	S1	S2	S3	Ø1	Ø2	Ø3
E1	mm	370.0	-	300.0	335.0	589	560.0	528.0	143.0	18.0	13.0	13.0	18.0	-	-	-
	inch	14.57	-	11.81	13.19	23.19	22.05	20.80	5.63	0.71	0.51	0.51	0.71	-	-	-

Dimensions

Frame E

MODEL
FRAME_E2
VFD450C23E VFD550C23E VFD750C23E VFD900C43E
VFD1100C43E

Frame		W	H	D	W1	H1	H2	H3	D1*	D2	S1	S2	S3	Ø1	Ø2	Ø3
E2	mm	370.0	715.8	300.0	335.0	589	560.0	528.0	143.0	18.0	13.0	13.0	18.0	22.0	34.0	92.0
	inch	14.57	28.18	11.81	13.19	23.19	22.05	20.80	5.63	0.71	0.51	0.51	0.71	0.87	1.34	3.62

Frame F

MODEL
FRAME_F
VFD900C23A
VFD1320C43A
VFD1600C43A

Frame		W	H	D	W1	H1	H2	H3	D1*	D2	S1	S2	S3	Ø1	Ø2	Ø3
F1	mm	420.0	-	300.0	380.0	800.0	770.0	717.0	124.0	18.0	13.0	25.0	18.0	92.0	35.0	22.0
	inch	16.54	-	11.81	14.96	31.50	30.32	28.23	4.88	0.71	0.51	0.98	0.71	3.62	1.38	0.87

Dimensions

Frame F

MODEL
FRAME_F2
VFD900C23E
VFD1320C43E
VFD1600C43E

Unit : mm[inch]

| Frame | W | H | D | W1 | H1 | H2 | H3 | D1* | D2 | S1 | S2 | S3 | Ø1 | Ø2 | Ø3 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F2 | mm | 420.0 | 940.0 | 300.0 | 380.0 | 800.0 | 770.0 | 717.0 | 124.0 | 18.0 | 13.0 | 25.0 | 18.0 | 92.0 | 35.0 | 22.0 |
| | inch | 16.54 | 37.00 | 11.81 | 14.96 | 31.50 | 30.32 | 28.23 | 4.88 | 0.71 | 0.51 | 0.98 | 0.71 | 3.62 | 1.38 | 0.87 |

Frame G

Detail A (Mounting Hole)
Detail B (Mounting Hole)

MODEL
FRAME_G1
VFD1850C43A
VFD2200C43A

Frame		W	H	D	W1	H1	H2	H3	S1	S2	S3	$\varnothing 1$	ø2	ø3
G1	mm	500.0	-	397.0	440.0	1000.0	963.0	913.6	13.0	26.5	27.0	-	-	-
	inch	19.69	-	15.63	217.32	39.37	37.91	35.97	0.51	1.04	1.06	-	-	-

Dimensions

Frame G

Detail A (Mounting Hole)

Detail B (Mounting Hole)

MODEL
FRAME_G2
VFD1850C43E
VFD2200C43E

Frame		W	H	D	W1	H1	H2	H3	S1	S2	S3	$\varnothing 1$	Ø2	Ø3
G2	mm	500.0	1240.2	397.0	440.0	1000.0	963.0	913.6	13.0	26.5	27.0	22.0	34.0	117.5
	inch	19.69	48.83	15.63	217.32	39.37	37.91	35.97	0.51	1.04	1.06	0.87	1.34	4.63

Frame H

See Detail A(Mounting Hole)
See Detail B(Mounting Hole)

MODEL

FRAME_H1
VFD2800C43A
VFD3150C43A
VFD3550C43A
VFD4500C43A*
Unit : mm[inch]

Frame		W	H	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
H1	mm	700.0	1435.0	398.0	630.0	290.0	-	-	-	-	1403.0	1346.6	-	-
	inch	27.56	56.50	15.67	24.80	11.42	-	-	-	-	55.24	53.02	-	-
Frame		H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	$\varnothing 1$	$\varnothing 2$	$\varnothing 3$
H1	mm	-	45.0	-	-	-	-	-	13.0	26.5	25.0	-	-	-
	inch	-	1.77	-	-	-	-	-	0.51	1.04	0.98	-	-	-

Dimensions

Frame H

Frame H

MODEL
FRAME_H3
VFD2800C43E
VFD3150C43E
VFD3550C43E
VFD4500C43E*
Unit: mm[inch]

Frame		W	H	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
H3	mm	700.0	1745.0	404.0	630.0	500.0	630.0	760.0	800.0	-	1729.0	1701.6	-	-
	inch	27.56	68.70	15.91	24.80	19.69	24.80	29.92	31.50	-	68.07	66.99	-	-
Frame		H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Ø1	$\varnothing 2$	Ø3
H3	mm	-	51.0	38.0	65.0	204.0	68.0	137.0	13.0	26.5	25.0	22.0	34.0	117.5
	inch	-	2.01	1.50	2.56	8.03	2.68	5.39	0.51	1.04	0.98	0.87	1.34	4.63

Option Cards

EMC-PG01L

Set by Pr.10-00~10-02

Terminals		Descriptions
PG1	VP	Output voltage for power: $+5 \mathrm{~V} /+12 \mathrm{~V} \pm 5 \%$ (use FSW3 to switch $+5 \mathrm{~V} /+12 \mathrm{~V}$) Max. output current: 200mA
	DCM	Common for power and signal
	$\begin{aligned} & \mathrm{A} 1, \mathrm{~A} 1 \text {,B1, /B1, } \\ & \text { Z1, /Z1 } \end{aligned}$	Encoder input signal (Line Driver) It can be 1-phase or 2-phase input; Max. input frequency: 300kP/sec
PG2	$\begin{aligned} & \text { A2, IA2, B2, I } \\ & \text { B2 } \end{aligned}$	Pulse input signal (Line Driver or Open Collector) Open collector input: $+5 \mathrm{~V} /+12 \mathrm{~V}$ (Note1) It can be 1-phase or 2-phase input; Max. input frequency: $300 \mathrm{kP} / \mathrm{sec}$.
PG OUT	AO, IAO, BO, IBO, ZO, IZO , SG	PG card output signals. It has division frequency function: 1~255 times Max. output voltage for Line driver: 5 Vdc Max. output current: 50 mA ; Max. output frequency: $300 \mathrm{kP} / \mathrm{sec}$ SG: The GND of PG card is the same as the host controller or PLC, so a common output signal is attained.

EMC-PG010

	Terminals		Descriptions
	PG1	VP	Output voltage for power: $+5 \mathrm{~V} /+12 \mathrm{~V} \pm 5 \%$ (use FSW 3 to switch $+5 \mathrm{~V} /+12 \mathrm{~V}$) Max. output current: 200mA
		DCM	Common for power and signal
		A1, IA1 ,B1, /B1, Z1, IZ1	Encoder input signal (Line Driver or Open Collector) Open collector input: $+5 \mathrm{~V} /+12 \mathrm{~V}$ (Note1) It can be 1-phase or 2-phase input; Max. input frequency: 300kP/sec
	PG2	$\begin{aligned} & \text { A2, IA2, B2, I } \\ & \text { B2 } \end{aligned}$	Pulse input signal (Line Driver or Open Collector) Open collector input: $+5 \mathrm{~V} /+12 \mathrm{~V}$ (Note1) It can be 1-phase or 2-phase input; Max. input frequency: $300 \mathrm{kP} / \mathrm{sec}$.
$\begin{aligned} & \text { Set by } \\ & \text { Pr.10-00~10-02 } \end{aligned}$	PG OUT	V+, /V-	Needs external power source for PG OUT circuit. Input voltage of power:+12V ~+24V
		V -	Negative power supply input
		A/O, B/O, ZO,	PG card output signals. It has division frequency function: 1~255 times Add a pull-up resistor to the open collector output signals to avoid signal interferences. [Three pull-up resistors are included in the package ($1.8 \mathrm{k} \Omega / 1 \mathrm{~W}$)] Max. Output current: 20mA; Max output frequency: $300 \mathrm{KP} / \mathrm{Sec}$

EMC-PG01R

	Terminals		Descriptions
		R1-R2	Resolver output power 7Vrms, 10kHz
	PG1	$\begin{aligned} & \text { S1,S2, S3, } \\ & \text { S4, } \end{aligned}$	Resolver input signal $3.5 \pm 0.175 \mathrm{Vrms}, 10 \mathrm{kHz}$
	PG2	$\begin{aligned} & \text { A2, IA2, B2, I } \\ & \text { B2 } \end{aligned}$	Pulse input signal (Line Driver or Open Collector) Open collector input: $+5 \mathrm{~V} /+12 \mathrm{~V}$ (Note1) It can be 1-phase or 2-phase input; Max. input frequency: 300kP/sec.
Set by Pr.10-00~10-02	PG OUT	$\begin{aligned} & \text { AO, IAO, } \\ & \text { BO, /BO, } \\ & \text { ZO, IZO , SG } \end{aligned}$	PG card output signals. It has division frequency function: 1~255 times Max. output voltage for Line driver: 5Vdc Max. output current: 50mA Max. output frequency: $300 \mathrm{kP} / \mathrm{sec}$ SG: The GND of PG card is the same as the host controller or PLC, so a common output signal is attained.

EMC－PG01U
■ FJMP1 S：Standard UVW Output Encoder；D：Delta Encoder

Note 1：For the Open Collector，set input voltage to $5 \sim 15 \mathrm{~mA}$ and install a pull－up resistor
【5V】 Recommend pull－up resistor： $100 \sim 220 \Omega, 1 / 2 \mathrm{~W}$ and above
【12V】Recommend pull－up resistor： $510 \sim 1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ and above
【24V】Recommend pull－up resistor： $1.8 \mathrm{k} \sim 3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ and above

Screw Specifications for Option Card Terminals

EMC－D42A／EMC－D611A	Wire gauge
EMC－BPS01	Torque
EMC－R6AA	Wire gauge
	Torque
EMC－PG01L／EMC－PG01O	Wire gauge
EMC－PG01R／EMC－PG01U	Torque

24～12AWG $\left(0.205 \sim 3.31 \mathrm{~mm}^{2}\right)$
$4 \mathrm{Kg}-\mathrm{cm}[3.47 \mathrm{lb}-\mathrm{in}]$
$24 \sim 16 \mathrm{AWG}\left(0.205 \sim 1.31 \mathrm{~mm}^{2}\right)$
$6 \mathrm{Kg}-\mathrm{cm}[5.21 \mathrm{lb}-\mathrm{in}]$
$30 \sim 16 \mathrm{AWG}\left(0.0509 \sim 1.31 \mathrm{~mm}^{2}\right)$
$2 \mathrm{Kg}-\mathrm{cm}[1.74 \mathrm{lb}-\mathrm{in}]$

Option Cards

EMC-D42A

	Terminals	Descriptions
	COM	Common for multi-function input terminals Select SINK (NPN) / SOURCE (PNP) in J1 jumper / external power supply
	MI10~ MI13	Refer to parameters 02-26~02-29 to program the multi-function inputs MI10~MI13. Internal power is applied from terminal E24: $+24 \mathrm{Vdc} \pm 5 \% 200 \mathrm{~mA}$, 5 W External power +24 Vdc : max. voltage 30 Vdc , min. voltage 19 Vdc , 30 W ON : the activation current is 6.5 mA ; OFF: leakage current tolerance is $10 \mu \mathrm{~A}$
1/O Extension Card	M010~MO11	Multi-function output terminals (photocoupler) Duty-cycle: 50\%; Max. output frequency: 100 Hz Max. current: 50mA; Max. voltage: 48 Vdc
	MXM	Common for multi-function output terminals MO10, MO11 (photocoupler) Max 48 Vdc 50 mA

EMC-D611A

I/O Extension Card

Terminals	Descriptions
AC	AC power common for multi-function input terminal (Neutral)
MI10~Mi15	Refer to Pr. $02.26 \sim$ Pr. 02.31 for multi-function input selection Input voltage: $100 \sim 130 \mathrm{VAC} ;$ Input frequency: $57 \sim 63 \mathrm{~Hz}$ Input impedance: 27 Kohm
Terminal response time: ON: $10 \mathrm{~ms} ;$ OFF: 20 ms	

EMC-R6AA

Relay
Extension Card

Terminals Descriptions

Refer to Pr. $02.36 \sim$ Pr. 02.41 for multi-function input selection Resistive load: 3A(N.O.)/250VAC
RA10~RA15 5A(N.O.)/30Vdc
RC10~RC15 Inductive load (COS 0.4)
2.0A(N.O.)/250VAC
2.0A(N.O.)/30Vdc

It is used to output each monitor signal, such as for drive in operation, frequency attained or overload indication.

EMC-BPS01

Power Shift Card

Terminals	Descriptions
	When the AC motor drive power is off, the external power supply card provides external power to the network system, PLC function, and other functions to allow continued operations.
24V	Input power: $24 \mathrm{~V} \pm 5 \%$
GND	Maximum input current: 0.5A
	Note: (1) Do not connect the control terminal +24 V (Digital control signal common: SOURCE) directly to the EMC-BPS01 input terminal 24 V (2) Do not connect control terminal GND directly to the EMC-BPS01 input terminal GND.

CMC-MOD01

Features

- MDI/MDI-X auto-detect
- Virtual serial port.
- Supports MODBUS TCP protocol
- AC motor drive keypad/Ethernet configuration

Network Interface

Interface	RJ-45 with Auto MDI/MDIX	Transmission speed	10/100 Mbps Auto-Detect
Number of ports	1 Port	Network protocol	ICMP, IP, TCP, UDP, DHCP, SMTP,
Transmission method	IEEE 802.3, IEEE 802.3u		MODBUS OVER TCP/IP, Delta Configuration
Transmission cable	Category 5e shielding 100M		

CMC-EIP01

Features

- MDI/MDI-X auto-detect ■ Virtual serial port
- Supports MODBUS TCP and Ethernet/IP protocol
- Baud rate: 10/100Mbps auto-detect
- AC motor drive keypad/Ethernet configuration

Network Interface

Interface	RJ-45 with Auto MDI/MDIX	Transmission speed	10/100 Mbps Auto-Detect
Number of ports	1 Port	Network protocol	ICMP, IP, TCP, UDP, DHCP, SMTP,
Transmission method	IEEE 802.3, IEEE 802.3u		MODBUS OVER TCP/IP, Dransmission cable
Category 5e shielding 100 M			

CMC-PD01

Features
■ Supports PZD control data exchange

- Supports PKW polling AC motor drive parameters
- Supports user diagnosis function

■ Auto-detects baud rates; supports Max. 12Mbps

PROFIBUS DP Connector
Interface
Transmission method
Transmission cable
Electrical isolation

DB9 connector
High-speed RS-485
Shielded twisted pair cable 500VDC

Communication

Message type	Cyclic data exchange
Module name	CMC-PD01
GSD document	DELA08DB.GSD
Company ID	08DB (HEX)
Serial transmission speed supported (auto-detection)	9.6kbps; $19.2 \mathrm{kbps} ; 93.75 \mathrm{kbps} ; 187.5 \mathrm{kbps} ; 125 \mathrm{kbps} ;$

CMC-DN01

Features

- Based on the high-speed communication interface of Delta HSSP protocol, able to conduct immediate control of AC motor drive.

- Supports Group 2 only connection and polling I/O data exchange.
- For I/O mapping, supports Max. 32 words of input and 32 words of output.
- Supports EDS file configuration in DeviceNet configuration software.

■ Supports all baud rates on DeviceNet bus: 125kbps, 250kbps, 500kbps and extendable serial transmission speed mode.

- Node address and serial transmission speed can be set up on AC motor drive.
- Power supplied from AC motor drive.

DeviceNet Connector

Interface	5-PIN open removable connector. Of 5.08 mm PIN interval
Transmission method	CAN
Transmission cable	Shielded twisted pair cable (with 2 power cables)
Transmission speed	$125 \mathrm{kbps}, 250 \mathrm{kbps}$, 500 kbps and extendable serial transmission speed mode
Network protocol	DeviceNet protocol

AC Motor Drive Connection Port

Interface	50 PIN communication terminal
Transmission method	SPI communication
Terminal function	1. Communicating with AC motor drive
Communication protocol	Delta HSSP protocol

Option Cards

EMC-COP01

Built-in EMC-COP01 card are available for VFD___C23E and VFD___C43E.

> RJ-45 Pin definition

8~1
Male

Female

Pin	Pin name
1	CAN_H
2	CAN_L
3	CAN_GND
6	CAN_GND

Definition
CAN_H bus line (dominant high) CAN_L bus line (dominant low) Ground/OV/V-Ground/OV/V-

Network Interface

Interface	RJ-45
Number of ports	1 Port
Transmission method	CAN
Transmission cable	CAN standard cable
Transmission speed	1M 500k 250k 125k 100k 50k
Communication protocol	CANopen

CANopen Communication Cable

Model: TAP-CB05, TAP-CB10

Titie	Part No.	L	
		mm	inch
1	TAP-CB05	500 ± 10	19 ± 0.4
2	TAP-CB10	1000 ± 10	39 ± 0.4

Digital Keypad Accessories: RJ45 Extension Leads and CMC-EIP01 Cables
Applicable Models: CBC-K3FT, CBC-K5FT, CBC-K7FT, CBC-K10F, CBC-K16FT

| Title | Part No. | |
| :---: | :---: | :--- | :--- |
| 1 | CBC-K3FT | Explanation |
| 2 | CBC-K5FT | RJ45 extension lead, 3 feet (approximately 0.9 m) |
| 3 | CBC-K7FT | RJ45 extension lead, 5 feet (approximately 1.5 m) |
| 4 | CBC-K10FT | RJ45 extension lead, 7 feet (approximately 2.1 m) |
| 5 | CBC-K16FT | RJ45 extension lead, 10 feet (approximately 3 m) |

Model Name

Applicable Motor Capacity
007:1HP (0.75kW)~3550:475HP (355kW)
Refer to the specifications for details
Series name (Variable Frequency Drive)

Ordering information

Power Range
230V:
ND: $0.75 \sim 3.7 \mathrm{~kW}$
HD: $0.4 \sim 2.2 \mathrm{~kW}$
460V:
ND: $0.75 \sim 5.5 \mathrm{~kW}$
HD: $0.4 \sim 4.0 \mathrm{~kW}$
VFD007C23A
VFD015C23A
VFD022C23A
VFD037C23A

Models

VFD055C23A
VFD075C23A
VFD110C23A

VFD007C43A	VFD007C43E
VFD015C43A	VFD015C43E
VFD022C43A	VFD022C43E
VFD037C43A	VFD037C43E
VFD040C43A	VFD040C43E
VFD055C43A	VFD055C43E

230V:

ND: $5.5 \sim 11 \mathrm{~kW}$
HD: 3.7~7.5kW

460V:
 ND: $7.5 \sim 15 \mathrm{~kW}$
 HD: 5.5~11kW

230V:
ND: 15~22kW

HD: 11~18.5kW

460 V :

ND: 18.5~30kW
HD: 15~22kW

230V:

ND: $30 \sim 37 \mathrm{~kW}$
HD: 20~30kW

460V:

ND: 37~75kW
HD: $30 \sim 45 \mathrm{~kW}$

230V:
ND: 45~75kW
HD: 37~55kW
460 V :
ND: 90~110kW HD: 55~90kW

230V:

ND: 90kW
HD: 75kW

460 V :

ND: 132~160kW HD: 110~132kW

460V:

ND: 185~220kW
HD: 160~185kW

460V:
ND: 280~450kW
HD: 220~355kW

[^1]
Frame_G1

VFD1850C43A VFD2200C43A

> VFD300C23A VFD370C23A VFD550C43A VFD750C43A

Frame_D1

Frame_E1 VFD450C23A VFD550C23A VFD750C23A VFD900C43A VFD1100C43A

Frame_F1 VFD900C23A VFD1320C43A VFD1600C43A

ND: 280~450kW
HD: 220~355kW
$\begin{array}{lll}\text { VFD150C23A } & \text { VFD185C43A } & \text { VFD185C43E } \\ \text { VFD185C23A } & \text { VFD220C43A } & \text { VFD220C43E }\end{array}$ VFD220C23A VFD300C43A VFD300C43E

Frame_D0-1 Frame_D2
VFD370C43S VFD300C23E VFD450C43S VFD370C23E VFD550C43E VFD750C43E

Frame D0-2
VFD370C43U VFD450C43U

Frame_G2 VFD1850C43E VFD2200C43E

Frame_H2	Frame_H3
VFD2800C43E-1	VFD2800C43E
VFD3150C43E-1	VFD3150C43E
VFD3550C43E-1	VFD3550C43E
VFD4500C43E-1*	VFD4500C43E*

VFD2800C43E-1 VFD3550C43E-1 VFD4500C43E-1*

Frame_H3
VFD2800C43E VFD3550 VFD4500C43E*

[^2]
Standard Motors

Used with 400V Standard Motors It is recommended to add an AC output reactor when using with a 400 V standard motor to prevent damage to motor insulation.

Torque Characteristics and
Temperature Rise
When a standard motor is drive controlled, the motor temperature will be higher than with DOL operation.
Please reduce the motor output torque when operating at low speeds to compensate for less cooling efficiency.
For continuous constant torque at low speeds, external forced motor cooling is recommended.

Vibration

When the motor drives the machine, resonances may occur, including machine resonances. Abnormal vibration may occur when operating a 2 -pole motor at 60 Hz or higher.

Noise

When a standard motor is drive controlled, the motor noise will be higher than with DOL peration
To lower the noise, please increase the carrier frequency of the drive. The motor fan can be very noisy when the motor speed exceeds 60 Hz

Special Motors

High-speed Motor
o ensure safety, please try the frequency setting with another motor before operating the high-speed motor at 120 Hz or higher.

Explosion-proof Motor
Please use a motor and drive that comply with explosion-proof requirements

Submersible Motor \& Pump
The rated current is higher than that of a tandard motor.
Please check before operation and select the capacity of the AC motor drive carefully. The motor temperature characteristics diffe from a standard motor, please set the moto thermal time constant to a lower value.

Brake Motor

When the motor is equipped with a mechanica brake, the brake should be powered by the mains supply.
Damage may occur when the brake is powered by the drive output. Please DO NOT drive the motor with the brake engaged

Gear Motor

In gearboxes or reduction gears, lubrication may be reduced if the motor is continuously operated at low speeds.
Please DO NOT operate in this way.
Synchronous Motor
These motors need suitable software for control. Please contact Delta for more information.

Single-phase Motor
Single-phase motors are not suitable for being operated by an AC Motor Drive. Please use a 3-phase motor instead when necessary

Attention
 Attention

Environmental Conditions

Installation Position

1. The drive is suitable for installation in a place with ambient temperature from -10 to 50 J
2. The surface temperature of the drive and brake resistor will rise under specific operation conditions. Therefore, pleas install the drive on materials that are noncombustible.
3. Ensure that the installation site complies with the ambient conditions as stated in the manual

Wiring

Limit of Wiring Distance
For the remote operation, please use
twist-sive and control box she distance between 20 m .

Maximum Motor Cable Length
current peaks due to
stray capacitance.
Please ensure that the motor cable is less than 30 m .
If the cable length can't be reduced, please lower the carrier frequency or use an AC reactor
Choose the Right Cable
Please refer to current value to choose the right cable section with enough capacity or use recommended cables.

Grounding
Please ground the drive completely by using the grounding terminal

How to Choose the Drive Capacity

Standard Motor

Please select the drive according to applicable motor rated current listed in the drive specification.
Please select the next higher power AC drive in case higher starting torque or quick acceleration/deceleration is needed.

Special Motor

Please select the drive according to: Rated current of the drive > rated current of the moto

Transportation and Storage
Please transport and store the drive in a place that meets environment specifications.

Peripheral Equipment

Molded-Case Circuit Breakers

(MCCB)
instal the recommended MCCB or ELCB in the main circuit of the drive and make sure tha the capacity of the breaker is equal to or lower than the recommended one.

Add a Magnetic Contactor(MC) in
the Output Circuit
When a MC is installed in the output circuit of the drive to switch the motor to commercial power or other purposes, please make sure that the drive and motor are completely stopped and remove the surge absorbers from the MC before switching it.
Add a Magnetic Contactor (MC) in the Input Circuit
Please only switch the MC ONCE per hour or it may damage the drive. Please use RUN/STOP signal to switch many times during motor operation

Motor Protection

The thermal protection function of the drive can be used to protect the motor by setting the operation level and motor type
When using a high-speed motor or
water-cooled motor the thermal time constant should be set to a lower value.

When using a longer cable to connect the motor thermal relay to a motor, high-frequency currents may enter via the stray capacitance.
It may result in malfunctioning of the relay as the real current is lower than the setting of therm carrier frequency or add an AC reactor to solve carrier frequency or add an AC reactor to solve this.

DO NOT Use Capacitors to Improve the Power Factor
Use a DC reactor to improve the power factor of the dre. pleas factor drive to prevent motor faults due to over current

Do NOT Use Surge Absorber
Please DO NOT install surge absorbers on the output circuit of the drive.

Lower the Noise
To ensure compliance with EMC regulations usually a filter and shielded wiring is used to lower the noise.

Method Used to Reduce the Surge

Current
Surge currents may occur in the phase-lead capacitor of the power system, causing an overvoltage when the drive is stopped or at low loads.

It is recommended to add a DC reactor to the drive.

Leading the Future of Drive Techinology

\qquad

Delta has reviewed the contents of this catalogue to ensure its consistency with the manual. However, due to product updates we can not guarantee there are no inconsistencies. We reserve the right to change or update the content without prior notice. All names, icons, photos, and trademarks are Delta's sole property. No part of this catalogue shall be copied, reproduced, or transmitted without prior written authorization from Delta Electronics, Inc.

Smarter. Greener. Together.

Industrial Automation Headquarters

Delta Electronics, Inc.
Taoyuan Technology Center
18 Xinglong Road, Taoyuan District,
Taoyuan City 33068, Taiwan (R.O.C.)
TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd.
Wujiang Plant 3
1688 Jiangxing East Road,
Wujiang Economic Development Zone
Wujiang City, Jiang Su Province, P.R.C. 215200
TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd.
238 Min-Xia Road, Pudong District,
ShangHai, P.R.C. 201209
TEL: 86-21-58635678 / FAX: 86-21-58630003
Delta Electronics (Japan), Inc.
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012, Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong,
Geumcheon-gu, Seoul, Korea, 153-704
TEL: 82-2-515-5303 / FAX: 82-2-515-5302
Delta Electronics Int'l (S) Pte Ltd.
4 Kaki Bukit Ave 1, \#05-05, Singapore 417939
TEL: 65-6747-5155 / FAX: 65-6744-9228
Delta Electronics (India) Pvt. Ltd.
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas

Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A.
Sao Paulo Office
Rua Itapeva, 26-3 ${ }^{\circ}$ andar Edificio Itapeva One-Bela Vista
01332-000-São Paulo-SP-Brazil
TEL: 5511 3568-3855 / FAX: 5511 3568-3865

Europe

Deltronics (The Netherlands) B.V.
Eindhoven Office
De Witbogt 20, 5652 AG Eindhoven, The Netherlands
TEL: 31-40-2592850 / FAX: 31-40-2592851
*We reserve the right to change the information in this catalogue without prior notice.

[^0]: ${ }^{*}$ Note: Please refer to the Product Specification

[^1]: Frame_H1 VFD2800C43A VFD3150C43A VFD3550C43A VFD4500C43A*

[^2]: * Available in China and Taiwan only.

